14 research outputs found

    Osteology of the Jurassic lizard Ardeosaurus brevipes (Meyer)

    No full text
    Volume: 25Start Page: 461End Page: 46

    California's Policy Approach to Develop Carbon Capture, Utilization and Sequestration as a Mitigation Technology

    Get PDF
    While California has been at the forefront in adopting an aggressive climate change mitigation policy, it has taken a more measured and tentative approach toward creating an enabling policy and a regulatory framework for carbon capture, utilization and sequestration (CCUS) technologies to contribute to greenhouse gas (GHG) reductions. In 2005, Governor's Executive Order S-3-05 required that California reduce GHG emissions to 1990 levels by 2020 and to 80% below 1990 levels by 2050. In 2006, State Assembly Bill 32 codified the 2020 goal into law. In 2006, the California Legislature required two California agencies, the California Energy Commission and the Department of Conservation, to produce a report recommending how the state could facilitate commercial adoption of geologic sequestration from industrial sources. In 2010, three state agencies, the Energy Commission, Public Utilities Commission, and Air Resources Board, convened the California Carbon Capture and Storage Review Panel to make recommendations on specific policy, institutional, and regulatory changes necessary for California to enable commercial-scale carbon capture and geologic storage projects. Since 2006, several legislative bills have been introduced to establish regulatory authority, liability, and address pore space ownership issues, but none have made it into law. To meet the state's aggressive targets, especially to 2050 goal, will nevertheless require widespread adoption of CCUS technologies, according to studies by the California Council on Science and Technology. California contributes 7.5% of the total GHG emissions in the USA, or 1.8% of global GHG emissions. Over half of this currently is from point sources, but that proportion will increase as the state pursues electrification of the transportation sector. Trajectories of future GHG emissions growth suggest mitigation technologies must be implemented at rates on the order of 10–20 million tonnes of GHGs removed per year. The cap-and-trade system recently adopted in California to address the GHG reduction mandates of Assembly Bill 32 would seem to encourage pursuit CCUS technology projects by industrial emitters, but uncertainties preclude developing viable business cases. Uncertainty includes a lack of data on the costs of capture and storage and the lack of cap-and-trade accounting protocols for CCUS technologies. Although these protocols are scheduled to be developed, they will lag the initialization of cap-and-trade in 2012

    Carbon Utilization to Meet California’s Climate Change Goals

    No full text
    We have developed a roadmap of CO2 utilization technologies for the California Energy Commission, a state government energy research, policy and permitting agency. The objective of the roadmap is to identify technologies that can make significant contributions to the state's 2020 and 2050 greenhouse gas (CHG) reduction goals. The state of California, under Assembly Bill 32, is committed to achieving reductions to 1990 GHG inventory levels by 2020 and, under Governor's Executive Order S-3-05, to 80 percent below those levels by 2050. The roadmap will guide future R&D investment and policy development for enabling carbon utilization technologies in California. For the purposes of the roadmap, we defined utilization as including technologies that produce a useful product from anthropogenic CO2, or through the processes of capture or sequestration of CO2. Technologies may contribute to reductions directly by permanently sequestering CO2, or indirectly by displacing the use of fossil fuels or more potent GHGs, such as CFCs. Technologies considered include: CO2 as a working fluid (including enhanced oil recovery (EOR), enhanced gas recovery (EGR), and enhanced geothermal systems (EGS)), chemical feedstocks, biofuels, building materials, compressed gas energy storage, cushion gas for natural gas storage, and water and marketable minerals produced from displaced sequestration reservoir fluids. Evaluation criteria include technological maturity, potential market size, purity of CO2 required, commercialization time frame, environmental impacts, water use, data on energy-carbon life cycle analysis, and potential local economic benefits such as job creation. In addition, we evaluated the potential impact of non-technical barriers to commercial- scale adoption, such as the need for clear accounting protocols to provide incentives for CO2 producers to adopt these technologies to meet carbon standards. It may be possible to integrate different utilization approaches. For example, CO2 can be reduced to produce methanol or formic acid, which can be converted into fuels. Other processes to functionalize the carbon atom produce saleable chemicals, such as urea. By combining these two approaches, synthesis of even more chemicals directly from CO2 could be achieved. Widespread deployment of CO2 utilization technologies also depends on integration into planning of a future carbon- energy infrastructure. While single projects for some technologies, such as EOR, may create a demand comparable to the CO2 volumes generated by large sources, other technologies may have to be aggregated and/or combined with geologic sequestration to provide the volume of sequestration required. Deployment networks provide opportunities for cost optimization of pipeline infrastructure and for focusing public or private investment to facilitate commercialization. Currently in California, utilization projects are in the research, pilot, or permitting stages, including projects to combine urea production and EOR, produce high carbon-content building materials, and develop chemical and biological CO2 recycling technologies. None of these projects have yet reached the development stage necessary to demonstrate whether the technologies can contribute effectively to reducing California's CHG emissions
    corecore